Vom Quanten-Klebstoff zur Elektronen-Schleuder: Laser-angeregte Elektronen überwinden den Coulomb-Wall mehrfach negativ aufgeladener Silber-Atomcluster

Schon im Physikunterricht lernen Schülerinnen und Schüler, dass sich zwei gleichnamige Ladungen abstoßen. Gehen man auf die Nanometer-Skala und lädt ein nur wenige Atomdurchmesser großes metallisches Teilchen nach und nach mit Elektronen auf, entsteht ein immer höherer, energetischer Coulomb-Wall um das Teilchen, ähnlich einer mittelalterlichen Burgbefestigung. Wie lange können Elektronen sich in dem Teilchen festsetzen und wann schaffen sie es, den Wall zu durchdringen um den Quantenkräften zu entkommen?

Zur Untersuchung dieser Fragen wurden Metallcluster, bestehend aus einer exakt eingestellten Menge von Silberatomen, als frei fliegende Teilchen im Vakuum erzeugt und mit einer bekannten Anzahl von Elektronen aufgeladen. Mit Hilfe des Photoeffekts ist es gelungen, ausgesendete Elektronen anhand ihrer Energie zu unterscheiden, die entweder über den Coulomb-Wall gelangt oder durch ihn hindurch getunnelt sind. Indem die Photonenenergie des Lasers sukzessive erhöht wurde, konnte der Wall „erklommen“, also abgetastet werden, was sich in einer sich ändernden Elektronenemission äußerte. Dabei zeigte sich, auch unter Ausnutzung von Modellrechnungen, dass die Elektronen im Inneren als Bestandteil eines komplexen Quantensystems aufzufassen sind. Offensichtlich besteht in den Clustern eine Energiemulde, in der Elektronen gefangen werden, ähnlich wie Elektronen in Orbitalen von Atomen. Mit der Anzahl zusätzlicher Elektronen lässt sich die Barriere am Muldenrand gezielt in ihrer Höhe und Breite einstellen. Damit ist ein besonderes System gefunden, an dem sich fundamentale Fragen der Physik studieren lassen. So ist noch ungeklärt, wieviel Zeit Elektronen benötigen, um eine Energiebarriere, die in einer klassischen Welt unüberwindbar wäre, zu „durchtunneln“. Auch technologisch mag diese Frage in Zukunft wichtig werden, weil die Funktionsweise von immer stärker miniaturisierten elektrischen Schaltkreisen zunehmend von Quanteneffekten bestimmt wird.

Kontakt:
Prof. Dr. K. H. Meiwes-Broer
Universität Rostock
Institut für Physik
meiwesuni-rostockde

Originalpublikation:
Cresting the Coulomb Barrier of Polyanionic Metal Clusters. Erschienen in ‚Physical Review Letters‘ am 29. März 2021.


Zurück zu allen Meldungen